SMPS (Switched Mode Power Supply)

Posted By on September 8, 2014

Download PDF
Regulated Power Supply
Series voltage regulator
D.C. to D.C. converters and D.C. to A.C. Converters belong to the category of Switched Mode Power Supplies (SMPS). The various types of voltage regulators, used in Linear Power Supplies (LPS), fall in the category of dissipative regulator, as they have  a voltage control element usually transistor or zener diode which dissipates power equal to the voltage difference between an unregulated input voltage and a fixed supply voltage multiplied by the current flowing through it. The switching regulator acts as a continuously variable power converter and hence its efficiency is negligibly affected by the voltage difference. Hence the switching regulator is also known as ‘non-dissipative regulator’. In a SMPS, the active device that provides regulation is always operated in cut-off or in saturation mode.
The input D.C. Supply is chopped at a higher frequency around 15 to 50 kHz using an active device like the BJT, power MOSFET or SCR and the converter transformer. Here the size of the ferrite core reduces inversely with the frequency. The lower limit is around 5 kHz for silent operation and an upper limit of 50 kHz to limit the losses in the choke and in active switching elements. The transformed wave form is rectified and filtered. A sample of the output voltage is used as the feedback signal for the drive circuit for the switching transistor to achieve regulation.
 Block Diagram of SMPS
Block Diagram of SMPS Working
The oscillator in above figure allows the control element to be switched ON and OFF. The control element usually consists of a transistor switch, an inductor, and a diode. For each switch ON, energy is pumped into the magnetic field associated with the inductor which is a transformer winding in practice. This energy is then released to the load at the desired voltage level.
By varying the duty cycle or frequency of switching, we can vary the stored energy in each cycle and thus control the output voltage. Higher efficiency is obtained since only the energy required is pumped to maintain the load current hence no power dissipation.
The major feature of SMPS is the elimination of physically massive power transformers and other power line magnetic. The net result is smaller, lighter package and reduced manufacturing cost, reducing primarily from the elimination of the 50 Hz components.
Advantages and disadvantages of SMPS:
The main advantage of this method is greater efficiency because the switching transistor dissipates little power when it is outside of its active region (i.e., when the transistor acts like a switch and either has a negligible voltage drop across it or a negligible current through it). Other advantages include smaller size and lighter weight (from the elimination of low frequency transformers which have a high weight) and lower heat generation due to higher efficiency. Disadvantages include greater complexity, the generation of high-amplitude, high-frequency energy that the low-pass filter must block to avoid electromagnetic interference (EMI), and a ripple voltage at the switching frequency and the harmonic frequencies thereof.

Very low cost SMPS may couple electrical switching noise back onto the mains power line, causing interference with A/V equipment connected to the same phase. Non-power-factor-corrected SMPSs also cause harmonic distortion.

  • 1 Personal computers
  • 2 Battery chargers
  • 3 Central power distribution
  • 4 Vehicles
  • 5 Consumer electronics
  • 6 Lighting
  • 7 Space station


Regulated Power Supply
Series voltage regulator

Download PDF

Posted by Akash Kurup

Founder and C.E.O, World4Engineers Educationist and Entrepreneur by passion. Orator and blogger by hobby