Recursion Trees

Posted By on September 15, 2014


Download PDF
The Master Method
Question Bank

A recursion tree is useful for visualizing what happens when a recurrence is iterated. It diagrams the tree of recursive calls and the amount of work done at each call.

For instance, consider the recurrence

T(n) = 2T(n/2) + n2.

The recursion tree for this recurrence has the following form:

In this case, it is straightforward to sum across each row of the tree to obtain the total work done at a given level:

This a geometric series, thus in the limit the sum is O(n2). The depth of the tree in this case does not really matter; the amount of work at each level is decreasing so quickly that the total is only a constant factor more than the root.

Recursion trees can be useful for gaining intuition about the closed form of a recurrence, but they are not a proof (and in fact it is easy to get the wrong answer with a recursion tree, as is the case with any method that includes ”…” kinds of reasoning). As we saw last time, a good way of establishing a closed form for a recurrence is to make an educated guess and then prove by induction that your guess is indeed a solution. Recurrence trees can be a good method of guessing.

Let’s consider another example,

T(n) = T(n/3) + T(2n/3) + n.

Expanding out the first few levels, the recurrence tree is:

Note that the tree here is not balanced: the longest path is the rightmost one, and its length is log3/2 n. Hence our guess for the closed form of this recurrence is O(n log n).

The Master Method
Question Bank

Download PDF

Posted by Akash Kurup

Founder and C.E.O, World4Engineers Educationist and Entrepreneur by passion. Orator and blogger by hobby

Website: http://world4engineers.com