Key Elements of an Information Security Policy

Posted By on December 30, 2014

Download PDF
Essential Terminologies in Ethical Hacking
The Security, Functionality, and Usability Triangle

The CIA triad of confidentiality, integrity, and availability is at the heart of information security. (The members of the classic InfoSec triad — confidentiality, integrity and availability — are interchangeably referred to in the literature as security attributes, properties, security goals, fundamental aspects, information criteria, critical information characteristics and basic building blocks.) There is continuous debate about extending this classic trio.Other principles such as Accountability have sometimes been proposed for addition – it has been pointed out[citation needed] that issues such as Non-Repudiation do not fit well within the three core concepts.

In 1992 and revised in 2002, the OECD’s Guidelines for the Security of Information Systems and Networks proposed the nine generally accepted principles: Awareness, Responsibility, Response, Ethics, Democracy, Risk Assessment, Security Design and Implementation, Security Management, and Reassessment. Building upon those, in 2004 the NIST’s Engineering Principles for Information Technology Securityproposed 33 principles. From each of these derived guidelines and practices.

In 2002, Donn Parker proposed an alternative model for the classic CIA triad that he called the six atomic elements of information. The elements are confidentiality, possession, integrity, authenticity, availability, and utility. The merits of the Parkerian hexad are a subject of debate amongst security professionals.

In 2013, based on a thorough analysis of Information Assurance and Security (IAS) literature, the IAS-octave was proposed as an extension of the CIA-triad. The IAS-octave includes Confidentiality, Integrity, Availability, Accountability, Auditability, Authenticity/Trustworthiness, Non-repudiation and Privacy. The completeness and accuracy of the IAS-octave was evaluated via a series of interviews with IAS academics and experts. The IAS-octave is one of the dimensions of a Reference Model of Information Assurance and Security (RMIAS), which summarises the IAS knowledge in one all-encompassing model.

In information security, data integrity means maintaining and assuring the accuracy and consistency of data over its entire life-cycle.This means that data cannot be modified in an unauthorized or undetected manner. This is not the same thing as referential integrity in databases, although it can be viewed as a special case of consistency as understood in the classic ACID model of transaction processing. Information security systems typically provide message integrity in addition to data confidentiality.

For any information system to serve its purpose, the information must be available when it is needed. This means that the computing systems used to store and process the information, the security controls used to protect it, and the communication channels used to access it must be functioning correctly. High availability systems aim to remain available at all times, preventing service disruptions due to power outages, hardware failures, and system upgrades. Ensuring availability also involves preventing denial-of-service attacks, such as a flood of incoming messages to the target system essentially forcing it to shut down.

In computing, e-Business, and information security, it is necessary to ensure that the data, transactions, communications or documents (electronic or physical) are genuine. It is also important for authenticity to validate that both parties involved are who they claim to be. Some information security systems incorporate authentication features such as “digital signatures”, which give evidence that the message data is genuine and was sent by someone possessing the proper signing key.

In law, non-repudiation implies one’s intention to fulfill their obligations to a contract. It also implies that one party of a transaction cannot deny having received a transaction nor can the other party deny having sent a transaction.

It is important to note that while technology such as cryptographic systems can assist in non-repudiation efforts, the concept is at its core a legal concept transcending the realm of technology. It is not, for instance, sufficient to show that the message matches a digital signature signed with the sender’s private key, and thus only the sender could have sent the message and nobody else could have altered it in transit. The alleged sender could in return demonstrate that the digital signature algorithm is vulnerable or flawed, or allege or prove that his signing key has been compromised. The fault for these violations may or may not lie with the sender himself, and such assertions may or may not relieve the sender of liability, but the assertion would invalidate the claim that the signature necessarily proves authenticity and integrity and thus prevents repudiation.

Electronic commerce uses technology such as digital signatures and public key encryption to establish authenticity and non-repudiation.

Essential Terminologies in Ethical Hacking
The Security, Functionality, and Usability Triangle

Download PDF

Posted by Akash Kurup

Founder and C.E.O, World4Engineers Educationist and Entrepreneur by passion. Orator and blogger by hobby