# Fuzzy Sets

Fuzzy Set Theory was formalised by Professor Lofti Zadeh at the University of California in 1965. What Zadeh proposed is very much a paradigm shift that first gained acceptance in the Far East and its successful application has ensured its adoption around the world.

A paradigm is a set of rules and regulations which defines boundaries and tells us what to do to be successful in solving problems within these boundaries. For example the use of transistors instead of vacuum tubes is a paradigm shift – likewise the development of Fuzzy Set Theory from conventional bivalent set theory is a paradigm shift.

Bivalent Set Theory can be somewhat limiting if we wish to describe a ‘humanistic’ problem mathematically. For example, Fig 1 below illustrates bivalent sets to characterise the temperature of a room.

The most obvious limiting feature of bivalent sets that can be seen clearly from the diagram is that they are mutually exclusive – it is not possible to have membership of more than one set ( opinion would widely vary as to whether 50 degrees Fahrenheit is ‘cold’ or ‘cool’ hence the expert knowledge we need to define our system is mathematically at odds with the humanistic world). Clearly, it is not accurate to define a transiton from a quantity such as ‘warm’ to ‘hot’ by the application of one degree Fahrenheit of heat. In the real world a smooth (unnoticeable) drift from warm to hot would occur.

This natural phenomenon can be described more accurately by Fuzzy Set Theory. Fig.2 below shows how fuzzy sets quantifying the same information can describe this natural drift.